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Supersymmetric complexity in the Sherrington-Kirkpatrick model
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By using a supersymmetric approach we compute the complexity of the metastable states in the Sherrington-
Kirkpatrick spin-glass model. We prove that the supersymmetric complexity is exactly equal to the Legendre
transform of the thermodynamic free energy, thus providing a recipe to find the complexity once the free
energy is known. Our results suggest that the supersymmetry may be a useful tool for the calculation of the
entropy of metastable states in generic glassy systems.
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A key issue in the physics of glassy systems is the comerating functional one has to imposedafunction on the
putation of the entropy of the metastable states, normallgtochastic equation itself, times a normalization given by the
called complexity in spin glasses, and configurational endeterminant of the Jacobian of the equation. The BRST in-
tropy in structural glasses and supercooled liquids. A knowlvariance is the mathematical consequence of the physical
edge of the complexity is crucial for understanding the dy-connection between the stochastic equation and its Jacobian
namics of a system when this is heavily influenced by strongn the generating function@#]. Moreover, the BRST super-
metastability effects. Moreover, in some theoretical framesymmetry has been applied to the study of the random filed
works, the drop in the number of accessible states leads to aging model[5]. It was first noted in Ref{6] that it is pos-
ergodicity breaking transition. In this context the complexity sible to generalize the BRST supersymmetry to the calcula-
is essential qlso from the thermodynamic point of view, as i&ion of the complexity in spin glasses. it was shown for a
the Adam-Gibbs theory of the thermodynamic glass transigiven model that a BRST calculation of the complexity was

tion [1]. in fact equivalent to the one of the partition function. This is

Despite its enormous theoretical relevance, there are feW,qaaq what we expect from a method which doestreat
analytic calculations of the complexity in glassy SYSIeMs, 511 andg?H as independent functions

and thls_|s for a very good reason. In a nuishell, to f”?d_ the The formal equivalence between complexity and standard
complexity we have to compute the number of local minima

. S . thermodynamics found in Ref6] by means of the BRST
(metastable statgsf some state function, which is typically : . L
highly nontrivial. Just to fix ideas, we may think that this supersymmeiry is a very important theoretical issue. In the

function is the HamiltoniarH. To compute the complexity, context of spin gla;ses the existence of such a connection has
we must impose that the gradienttéfithe force vanishes in P€en much investigated in the p@Bt-15. In a classic paper
the local minima, and we have to include as a normalizatior/): Bray and Moore first calculated the complexity of the
factor the second derivative ¢ (the Hessiah Moreover, Sherrington-Kirkpatrick(SK) model [16] by counting the
we may want to classify the metastable states according tgumber of local minima of the Thouless-Anderson-Palmer
their value ofH. Therefore, beside the force and the Hessian(TAP) free energy{17], which in mean-field spin glasses is
we must include the state function itself in the calculation.the state function discussed above. The same authors also
Computing the complexity is thus a formidable technicalnoted in Ref.[8] some deep formal connections between
task, since we have to deal withreevery complicated func- TAP complexity and standard thermodynamics, while De
tions:H, dH, and#?H. In comparison, the calculation of the Dominicis and Young showed in Ref10] that TAP and
partition function, which just involvesl, is an easy business. static approaches were in fact equivalent, once some key
This apparent difficulty in the calculation of the complex- hypothesis were made. These studies culminated in a re-
ity stems from the fact that most methods trelat /H, and  markable work[11], where Brayet al. uncovered a sort of
9°H as three independent objects, when of course they areegendre transform relationship between TAP complexity
not so. Every calculation which fails to capture the fact thatand static free energy.
it is essentially jusbnefunctionH that we are dealing with, A method to compute the complexity which does not rely
effectively wastes a crucial information. It would be there-on the existence of a TAP free energy was introduced by
fore important to find a tool which exploits this information Monassor{12] and by Franz and Parifl13]. The basic idea
to simplify the calculation of the complexity. The Becchi- is to introduce a coupling between different systems forcing
Rouet-Stora-TyutifBRST) supersymmetry seems to be suchthem to live in the same metastable state. The free-energy
a tool. cost of such a constrained supersystem is equal to the en-
The BRST supersymmetry was first introduced in the contropic contribution of the metastable states, which is the
text of quantum gauge theorig,3]. Its relevance in statis- complexity. Within this approach, close connections between
tical mechanics is mainly due to the fact that the generatingomplexity and thermodynamics, similar to those found in
functional associated to stochastic equatites the Lange- the TAP context in Ref[11], were found. In particular, in
vin equation enjoys the BRST invariance. To build the gen- spin-glass models with one step of replica symmetry break-
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ing (1RSB [18], the formulation of Monasson shows that ¥ (3,r=1)=F(B) only held if some suitable assumptions
the complexity is equal to the Legendre transform of thewere made. In Ref.19] it was proved that the assumptions
static free energy with respect to the breaking paiof the  used in Ref[10] were in fact a general consequence of the
overlap matrix{12,15. BRST supersymmetry. In what follows we perform a super-
Despite all these investigations, it is fair to say that asymmetric quenched calculation &f (8,r) for genericr.
general formal connection between complexity of the metaThe TAP free energy for the SK model is given [dy7]
stable states and static free energy has not been proved yet.
In particular, it is unclear how the Legendre transform B 1
method of Ref[12] should be used in systems with more BFrap(m)=— 2 ; Jijmym; + B Z bo(mi), (5
than one step of replica symmetry breaking, as in the SK
model. In fact, none of the previous SK investigatip8sl1] 1 32
succeeded in proving the existence of a sharp Legendreq&o(m)zzln(l—m2)+mtanh*1(m)—ln Z—Z(l—q)z.
transform relationship as in 1RSB systems.
In this find i - ®)
paper we find an exact connection between com

plexity of the metastable states and static free energy in th¢ne variableq is the self-overlap of the TAP states,
SK model: we prove that the quenched TAP complexity ob-_ 1/N2imi2- The quenched couplingsare random variables

tained by means of the BRST supersymmetry is the Legyit Gaussian distribution and varianbe From Eq.(2) we
endre transform of the static free energy with respect to thﬁave that thejuenchedpotential ¥ (B,r) is

largestbreaking point of its overlap matrix. Our result con-

firms the validity of the Legendre transform method of Refs. 1
[12-14 and its consistency with the investigations of Refs. —pr¥(p,r= mlnp(ﬁ,rl\])”, (7)
[8—11. Moreover, our findings strongly suggest that the
BRST supersymmetry should be considered as an essential N
tool also in more general glassy systems. For example, the p(B,r]d)= 2 e~ T BFTAR(M®)
analysis of the structure of the stationary points of the poten- ’ a=1
tial energy(both minima and saddlgé structural glasses is
a very relevant issue which could benefit the supersymmetric :j H dm 8(3,Frap(m))
approach. i
The complexity of the TAP states with free-energy density B
f, at inverse temperaturg, is defined a$7] X |ded;d;Frap(m))|e” AFrarm. (g)
1 N In Eq. (7) we haveN—o andn—0, and the over-bar indi-
S(B,f)= _|nz S(NBf— BFap(MY)) cates an average over the disorder. As usual, the modulus of
N =1 the determinant will be dropped. This amounts to assuming
N that at sufficiently low temperatures the largest part of TAP
_ Emf dreNrﬁfz e~ "BFTAR(M) (1) solutions are minima. Of course, any method which drops
N a=1 the modulus is doomed to fail if stable minima are subdomi-

o . nant with respect to unstable saddles. After introducing the
where m*={m"} are the local magnetizations at sitt commuting fieldsx; to implement thes functions and the

=1---Ninstatea=1---N. Astatem is defined as a local 4nticommuting(Grassmann fields ¢, for the determi-
minimum of the TAP free energlyrap(m) [17]. If we define a0t we find

the thermodynamic potential (3,r),

N — W m,x, o,
) (B.r J)—JDmDXD DyehSmxi), )
exr(—IBNr\II)EZ @ FBFTap(M ), 2) LA | DY
a=1

where the actiors is given by
we can use the steepest descent method ifEBa@nd obtain
the complexity as the Legendre transform¢g,r),

S(m,x, ¢, «/r)=2 XiaiFTAP(m)JF; %‘r/fjaiajFTAP(m)

(B f)=prf—prv(B.r), ()
o . —rFrap(m). (10)
where the parameter=r(3,f) is fixed by the equation
Before substituting the actual form of the TAP free energy in
av(B.r) the equation above, it is useful to consider the role of the
Y (B.1)+r ar =f. ) supersymmetry. Indeed, as first noted in R6f, action(10)

is invariant under the following generalization of the BRST
From Eq.(2) we see that for =1 the potential' must be transformatiorf2,3],
equal to the standard static free energy of the syst¢p), o
calculated in the TAP context. This calculation was first per- ém;=ey;, S =ery;, Spi=—e€x;, =0,
formed in Ref.[10], where it was shown that the relation (11
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where € is an infinitesimal Grassmann parameter. If we

average the variation omi-% and of xi-% [6,19], we
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It is important to note that the supersymmetric transfor-
mations on the original parametdfsl) propagate to the new

obtain the two Ward identities associated to the BRST supeariational parameters in Egel7) and(18). In this way the

symmetry,
(i) +(mix;) =0, (12)
(i) +(xx)=0. (13

We note that the supersymmetric form of acti@g) and the

validity of BRST relationg12) and(13) are completely gen-

BRST Ward identities(12) and (13) give rise to the two
following extra relations for the variational parameters:

Agp= BZQabrv (19

Nav=s Br? (20)
ab 2 Qab -

eral, since they do not depend on the explicit form of the

function whose stationary point are considered. In the

present case this function is the TAP free energy, but in anThese two identities select among tfpatentially many so-
other model it could equally be the potential energy, or anyutions of the saddle point equations, the BRST supersym-

other function of the local degrees of freedom.

metric one. At the annealed level, in addition to the BRST

To averagq)(ﬂ,”J)H over the disorder we introduce rep- SolutiOIl’l discusse.d in Re[lg], there is also a.. non.'BRST
licas and the scalar overlap will now be generalized by ©ne, discovered in Ref{7], and they have quite different

introducing the overlap matrig,,=m?-m°. In order to lin-

properties. Even though the annealed BRST solution repro-

disorder we introduce the usual Lagrange multipligt8],
m2mP— N ap, MAXP—w,y, Y2yP—t,,. After this is done,

the integrals irnx andJ,z,// become Gaussian and can be per-

formed explicitly. Moreover, the action factorizes and Fbr
—o0 We can use the steepest descent method to get

—,Br\lf(,B,r)zrl]iLnO% 20+Inf 1;[ dmPef(Mm) | (14)
Following Refs.[7,9,19 we define

Bab=B%(1~ Gaq) Sap+t*", (15

Aap=—B*(1=0aa) Fap—W*", (16)

and therefore obtaifsee Ref[22] for detail9

1
So=2 5 2 (BL= A%~ 2 (BagtAaa)(1-dag)

:2_,82 ab

BZ
- % Zr2q§b+ A2Pq,p— 1A%,

1
- 5'”[(27732)“0'9'[%1:], (17)
LM = =12 ¢o(Gaa,m?)+ >, A3PmimP
a ab
San 1
+Inde +Bay | — — tanh 'm?
{ —mZ2 ) 2p2 %

_ 2 Aacmc} q;bl

tanh tmP— >, Abcmc} . (18
Cc

The parametera,,, Bap, Az, @andd,, must be fixed by
the saddle point equations and it is easy to show Byt
=0 is solution[7,11,19.

issue whether or not this is indeed the correct solution at the
annealed levdl20,21]. However, in order to have physically
relevant results dow free energies, the quenched calculation
is required, and we do not know at the moment whether it
exists, and what is the form of a quench&aah-BRST solu-
tion of the saddle point equations, since the previous
guenched calculation of Reff11] has been proved to be in
fact a supersymmetric on@1,22. On the other hand, the
BRST solution we present here does reproduce the correct
static results at the quenched level, providing, for example,
the correct equilibrium free energy at the lower band edge,
and a direct connection with the static free-energy functional.
Once the BRST identities are imposed, the only saddle
point equation we are left with is obtained by doing the
variations of Eq.(17) and (18) with respect to\,,. This
gives the relatiorg,,=((m®mP)), where the average is per-
formed with the distribution ex£(m?)). If we use Eqs(19)
and (20) into Egs.(17) and (18), and make the change of
variablem®— h3=tanh (m?), we finally obtain

n

r% qib—g <1—qaa>2}

2
B\I’(,B,r)=—ln2+f—n

cosh{h?)"

1 " dh?
nr a 2 B%detq,y
1 n
xexp — —= >, h3g . h?|.
p( 257 % M )

(21)

The BRST supersymmetry has drastically reduced the num-
ber of parameters, and the computationlf3,r) has at this
point the same degree of complication as that of the standard
free energyF(B), with just one overlap matrix,, to be
fixed variationally. We shall now show that the connections
between¥ (8,r) andF(B) are in fact much deeper than that.
The general form of the SK quenched free energy in terms of
replicated spins i§16]
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BZ ﬁz Ns 5
= — — 4 —
BR(B)=~ 7+ 50 2, Qi
1 2 Ng
—=In X exg5 X Quoccf|,
Ns [go==1] 2 i7p
(22
where the o“ are the replicated spin variables with
=1,...hsandQ,z is the ngXng overlap matrix, withng
—0. By introducing in Eq(21) the auxiliary spin variables
7h, with a=1,...n and u=1,...r, we can rewrite
v(B,r) as
A5 R PRt
BY(Br)== 7+ 501 2 dapt —— X i
1 2/ n 1
anS ed2( TS e
e 2\ o

n r

_2 2 Uaa

a u

(23

|

A comparison of the two trace terms in Eq82) and (23)
suggests the relatiam,=rn. Once this identification is done,
we can connect the“ spin variables, to the’ spin vari-
ables in the following way:

(o1, ... ,UnS)Z(T%, Ty e e
Let us now assume that the potent®(3,r) (and thus the
TAP complexity is calculated ak levels of RSB[18]. The

TAP overlap matrixq,y, is then given by

k+1

Qo+ 2,1 (gi—qi_pe”)

ab

(k) —

ab ™

q (24

with y,,;=1. The matricese™¥) are nxn ultrametric
block matrices, equal to one on the diagonal blocks of siz
y;, and zero elsewheres{};"=6,,). The variablesy; are
thus the replica symmetry breaking points. In the TAP ap
proach the diagonal of the overlap matrgg,= .1, con-
tains the self-overlap of the states, and for this reagan
=1. There arek+1 values of the overlap, but onk/ non-
trivial breaking points, and thus,,, is ak RSB matrix. Given
this form of q,y,, it is possible to prove thd22]

n r n r
> 2 -2 X q
ab uv a u

*)

() —
ab

rn
k+1
aa 2 Q(gyg )a-aO-,Bl
a# B

(29
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whereQ{5 ™ is a standardnxrn RSB matrix, withk+ 1
levels of replica symmetry breaking. More precisely,

k+1

QU V=do+ 2, (Gi—ai-p)e,y " (26)

From this formula we see that the entries@{f; ) are the
same ag1l), whereas thé&-+1 replica symmetry breaking
pointsx; of QY5 ™ are rescaled by a factor of that is, x;
=ry;. In particular, thdargestbreaking poini of the static
matrix Q' V) is given byx=x,=r. By inserting relation
(25) into (23), we finally obtain

W (B,r|q8) =F(B|Q%™). 27

We have thus proved that the thermodynamic potential
¥ (B,r) calculated at th&-RSB level is equal to static free
energyF(B) calculated at thé&c+1 RSB level. The replica
symmetry breaking points of the static matf,; are sim-

ply the ones of the TAP matrig,, rescaled by the parameter
r, and the extrak+ 1)th breaking point oQ 4 is equal tor.
This rescaling was first noted in R¢fl1], and later in Ref.
[14], although the lack of BRST symmetry of those calcula-
tions prevented to prove ER7).

From Eq.(3), and given the relation betwedn(3,r) and
F(B), we finally have the general Legendre equation con-
necting the quenched complexity of the TAP states to the
standard static free energy in the SK model,

2(B.f)=pxf—BxF(B;x),
with the largest breaking pointfixed by the equation

IF(B;X)
ax

(28)

f=F(B;x)+x (29

This result can be summarized as followlse supersymmet-
ric quenched complexity of the TAP states is the Legendre
transform of the static free energy with respect to the largest
dreaking point xof its overlap matrix.

It has been conjectured in R¢R3] that in systems with
more than one step of replica symmetry breaking the com-
plexity of clustersat leveli is given by the Legendre trans-
form of the free energy with respect to the breaking pgjnt
For X;=Xnax Clusters are just states, and our result is recov-
ered. It would be interesting to study whether the conjecture
of Ref.[23] can be exactly proved within the supersymmet-
ric formalism used here.

We thank A. Crisanti, L. Leuzzi, R. Monasson, A. Mon-
tanari, F. Ricci-Tersenghi, and T. Rizzo for some interesting
discussions.
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