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Supersymmetric complexity in the Sherrington-Kirkpatrick model
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By using a supersymmetric approach we compute the complexity of the metastable states in the Sherrington-
Kirkpatrick spin-glass model. We prove that the supersymmetric complexity is exactly equal to the Legendre
transform of the thermodynamic free energy, thus providing a recipe to find the complexity once the free
energy is known. Our results suggest that the supersymmetry may be a useful tool for the calculation of the
entropy of metastable states in generic glassy systems.
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A key issue in the physics of glassy systems is the co
putation of the entropy of the metastable states, norm
called complexity in spin glasses, and configurational
tropy in structural glasses and supercooled liquids. A kno
edge of the complexity is crucial for understanding the d
namics of a system when this is heavily influenced by stro
metastability effects. Moreover, in some theoretical fram
works, the drop in the number of accessible states leads t
ergodicity breaking transition. In this context the complex
is essential also from the thermodynamic point of view, as
the Adam-Gibbs theory of the thermodynamic glass tran
tion @1#.

Despite its enormous theoretical relevance, there are
analytic calculations of the complexity in glassy system
and this is for a very good reason. In a nutshell, to find
complexity we have to compute the number of local minim
~metastable states! of some state function, which is typicall
highly nontrivial. Just to fix ideas, we may think that th
function is the HamiltonianH. To compute the complexity
we must impose that the gradient ofH ~the force! vanishes in
the local minima, and we have to include as a normalizat
factor the second derivative ofH ~the Hessian!. Moreover,
we may want to classify the metastable states accordin
their value ofH. Therefore, beside the force and the Hessi
we must include the state function itself in the calculatio
Computing the complexity is thus a formidable technic
task, since we have to deal withthreevery complicated func-
tions:H, ]H, and]2H. In comparison, the calculation of th
partition function, which just involvesH, is an easy business

This apparent difficulty in the calculation of the comple
ity stems from the fact that most methods treatH, ]H, and
]2H as three independent objects, when of course they
not so. Every calculation which fails to capture the fact th
it is essentially justonefunctionH that we are dealing with
effectively wastes a crucial information. It would be ther
fore important to find a tool which exploits this informatio
to simplify the calculation of the complexity. The Becch
Rouet-Stora-Tyutin~BRST! supersymmetry seems to be su
a tool.

The BRST supersymmetry was first introduced in the c
text of quantum gauge theories@2,3#. Its relevance in statis
tical mechanics is mainly due to the fact that the genera
functional associated to stochastic equations~as the Lange-
vin equation! enjoys the BRST invariance. To build the ge
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erating functional one has to impose ad function on the
stochastic equation itself, times a normalization given by
determinant of the Jacobian of the equation. The BRST
variance is the mathematical consequence of the phys
connection between the stochastic equation and its Jaco
in the generating functional@4#. Moreover, the BRST super
symmetry has been applied to the study of the random fi
Ising model@5#. It was first noted in Ref.@6# that it is pos-
sible to generalize the BRST supersymmetry to the calc
tion of the complexity in spin glasses. it was shown for
given model that a BRST calculation of the complexity w
in fact equivalent to the one of the partition function. This
indeed what we expect from a method which doesnot treat
H, ]H, and]2H as independent functions.

The formal equivalence between complexity and stand
thermodynamics found in Ref.@6# by means of the BRST
supersymmetry is a very important theoretical issue. In
context of spin glasses the existence of such a connection
been much investigated in the past@7–15#. In a classic paper
@7#, Bray and Moore first calculated the complexity of th
Sherrington-Kirkpatrick~SK! model @16# by counting the
number of local minima of the Thouless-Anderson-Palm
~TAP! free energy@17#, which in mean-field spin glasses
the state function discussed above. The same authors
noted in Ref.@8# some deep formal connections betwe
TAP complexity and standard thermodynamics, while
Dominicis and Young showed in Ref.@10# that TAP and
static approaches were in fact equivalent, once some
hypothesis were made. These studies culminated in a
markable work@11#, where Brayet al. uncovered a sort of
Legendre transform relationship between TAP complex
and static free energy.

A method to compute the complexity which does not re
on the existence of a TAP free energy was introduced
Monasson@12# and by Franz and Parisi@13#. The basic idea
is to introduce a coupling between different systems forc
them to live in the same metastable state. The free-en
cost of such a constrained supersystem is equal to the
tropic contribution of the metastable states, which is
complexity. Within this approach, close connections betwe
complexity and thermodynamics, similar to those found
the TAP context in Ref.@11#, were found. In particular, in
spin-glass models with one step of replica symmetry bre
©2003 The American Physical Society03-1
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ing ~1RSB! @18#, the formulation of Monasson shows th
the complexity is equal to the Legendre transform of
static free energy with respect to the breaking pointx of the
overlap matrix@12,15#.

Despite all these investigations, it is fair to say tha
general formal connection between complexity of the me
stable states and static free energy has not been proved
In particular, it is unclear how the Legendre transfo
method of Ref.@12# should be used in systems with mo
than one step of replica symmetry breaking, as in the
model. In fact, none of the previous SK investigations@8,11#
succeeded in proving the existence of a sharp Legen
transform relationship as in 1RSB systems.

In this paper we find an exact connection between co
plexity of the metastable states and static free energy in
SK model: we prove that the quenched TAP complexity o
tained by means of the BRST supersymmetry is the L
endre transform of the static free energy with respect to
largestbreaking point of its overlap matrix. Our result co
firms the validity of the Legendre transform method of Re
@12–14# and its consistency with the investigations of Re
@8–11#. Moreover, our findings strongly suggest that t
BRST supersymmetry should be considered as an esse
tool also in more general glassy systems. For example,
analysis of the structure of the stationary points of the pot
tial energy~both minima and saddles! in structural glasses is
a very relevant issue which could benefit the supersymme
approach.

The complexity of the TAP states with free-energy dens
f, at inverse temperatureb, is defined as@7#

S~b, f !5
1

N
ln(

a51

N
d„Nb f 2bFTAP~ma!…

5
1

N
lnE dreNrb f (

a51

N
e2rbFTAP(ma), ~1!

where ma[$mi
a% are the local magnetizations at sitei

51•••N in statea51•••N. A statema is defined as a loca
minimum of the TAP free energyFTAP(m) @17#. If we define
the thermodynamic potentialC(b,r ),

exp~2bNrC![ (
a51

N
e2rbFTAP(ma), ~2!

we can use the steepest descent method in Eq.~1! and obtain
the complexity as the Legendre transform ofC(b,r ),

S~b, f !5br f 2brC~b,r !, ~3!

where the parameterr 5r (b, f ) is fixed by the equation

C~b,r !1r
]C~b,r !

]r
5 f . ~4!

From Eq.~2! we see that forr 51 the potentialC must be
equal to the standard static free energy of the systemF(b),
calculated in the TAP context. This calculation was first p
formed in Ref.@10#, where it was shown that the relatio
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C(b,r 51)5F(b) only held if some suitable assumption
were made. In Ref.@19# it was proved that the assumption
used in Ref.@10# were in fact a general consequence of t
BRST supersymmetry. In what follows we perform a sup
symmetric quenched calculation ofC(b,r ) for generic r.
The TAP free energy for the SK model is given by@17#

bFTAP~m!52
b

2 (
i j

Ji j mimj1
1

b (
i

f0~mi !, ~5!

f0~m!5
1

2
ln~12m2!1m tanh21~m!2 ln 22

b2

4
~12q!2.

~6!

The variableq is the self-overlap of the TAP states,q
51/N( imi

2 . The quenched couplingsJ are random variables
with Gaussian distribution and varianceN. From Eq.~2! we
have that thequenchedpotentialC(b,r ) is

2brC~b,r !5
1

nN
lnr~b,r uJ!n, ~7!

r~b,r uJ!5 (
a51

N
e2rbFTAP(ma)

5E )
i

dmid„] iFTAP~m!…

3udet„] i] jFTAP~m!…ue2brF TAP(m). ~8!

In Eq. ~7! we haveN→` andn→0, and the over-bar indi-
cates an average over the disorder. As usual, the modulu
the determinant will be dropped. This amounts to assum
that at sufficiently low temperatures the largest part of T
solutions are minima. Of course, any method which dro
the modulus is doomed to fail if stable minima are subdom
nant with respect to unstable saddles. After introducing
commuting fieldsxi to implement thed functions and the
anticommuting~Grassmann! fields c̄ i ,c i for the determi-
nant, we find

r~b,r uJ!5E DmDxDc̄DcebS(m,x,c̄,c), ~9!

where the actionS is given by

S~m,x,c̄,c!5(
i

xi] iFTAP~m!1(
i j

c̄ ic j] i] jFTAP~m!

2rF TAP~m!. ~10!

Before substituting the actual form of the TAP free energy
the equation above, it is useful to consider the role of
supersymmetry. Indeed, as first noted in Ref.@6#, action~10!
is invariant under the following generalization of the BRS
transformation@2,3#,

dmi5ec i , dxi5erc i , dc̄ i52exi , dc i50,
~11!
3-2
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where e is an infinitesimal Grassmann parameter. If w
average the variation ofmi•c̄ i and of xi•c̄ i @6,19#, we
obtain the two Ward identities associated to the BRST su
symmetry,

^c̄ ic i&1^mixi&50, ~12!

r ^c̄ ic i&1^xixi&50. ~13!

We note that the supersymmetric form of action~10! and the
validity of BRST relations~12! and~13! are completely gen-
eral, since they do not depend on the explicit form of t
function whose stationary point are considered. In
present case this function is the TAP free energy, but in
other model it could equally be the potential energy, or a
other function of the local degrees of freedom.

To averager(b,r uJ)n over the disorder we introduce rep
licas and the scalar overlapq will now be generalized by
introducing the overlap matrixqab5ma

•mb. In order to lin-
earize the quadratic terms generated by the average ove
disorder we introduce the usual Lagrange multipliers@19#,
mamb→lab , maxb→wab , c̄acb→tab . After this is done,
the integrals inx andc̄,c become Gaussian and can be p
formed explicitly. Moreover, the action factorizes and forN
→` we can use the steepest descent method to get

2brC~b,r !5 lim
n→0

1

n FS01 lnE )
a

dmaeL(ma)G . ~14!

Following Refs.@7,9,19# we define

Bab[b2~12qaa!dab1tab, ~15!

Dab[2b2~12qaa!dab2wab, ~16!

and therefore obtain~see Ref.@22# for details!

S05
1

2b2 (
ab

~Bab
2 2Dab

2 !2(
a

~Baa1Daa!~12qaa!

2(
ab

Fb2

4
r 2qab

2 1labqab2rDabqabG
2

1

2
ln@~2pb2!ndetqab#, ~17!

L~ma!52r(
a

f0~qaa ,ma!1(
ab

labmamb

1 ln detS dab

12ma
2

1BabD 2
1

2b2 (
ab

F tanh21ma

2(
c

DacmcGqab
21F tanh21mb2(

c
DbcmcG . ~18!

The parametersDab , Bab , lab , andqab must be fixed by
the saddle point equations and it is easy to show thatBab
50 is solution@7,11,19#.
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It is important to note that the supersymmetric transf
mations on the original parameters~11! propagate to the new
variational parameters in Eqs.~17! and~18!. In this way the
BRST Ward identities~12! and ~13! give rise to the two
following extra relations for the variational parameters:

Dab5b2qabr , ~19!

lab5
1

2
b2r 2qab . ~20!

These two identities select among the~potentially many! so-
lutions of the saddle point equations, the BRST supersy
metric one. At the annealed level, in addition to the BR
solution discussed in Ref.@19#, there is also a non-BRST
one, discovered in Ref.@7#, and they have quite differen
properties. Even though the annealed BRST solution rep
duces the static results at the 1RSB level, it is still an op
issue whether or not this is indeed the correct solution at
annealed level@20,21#. However, in order to have physicall
relevant results atlow free energies, the quenched calculati
is required, and we do not know at the moment whethe
exists, and what is the form of a quenchednon-BRST solu-
tion of the saddle point equations, since the previo
quenched calculation of Ref.@11# has been proved to be i
fact a supersymmetric one@21,22#. On the other hand, the
BRST solution we present here does reproduce the cor
static results at the quenched level, providing, for examp
the correct equilibrium free energy at the lower band ed
and a direct connection with the static free-energy function

Once the BRST identities are imposed, the only sad
point equation we are left with is obtained by doing t
variations of Eq.~17! and ~18! with respect tolab . This
gives the relationqab5^^mamb&&, where the average is pe
formed with the distribution exp„L(ma)…. If we use Eqs.~19!
and ~20! into Eqs. ~17! and ~18!, and make the change o
variablema→ha5tanh21(ma), we finally obtain

bC~b,r !52 ln 21
b2

4n F r(
ab

n

qab
2 2(

a

n

~12qaa!
2G

2
1

nr
lnE )

a

n
dha

A2pb2detqab

cosh~ha!r

3expS 2
1

2b2 (
ab

n

haqab
21hbD . ~21!

The BRST supersymmetry has drastically reduced the n
ber of parameters, and the computation ofC(b,r ) has at this
point the same degree of complication as that of the stand
free energyF(b), with just one overlap matrixqab to be
fixed variationally. We shall now show that the connectio
betweenC(b,r ) andF(b) are in fact much deeper than tha
The general form of the SK quenched free energy in term
replicated spins is@16#
3-3
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bF~b!52
b2

4
1

b2

2ns
(

a.b

ns

Qab
2

2
1

ns
ln (

[sa561]

expFb2

2 (
aÞb

ns

QabsasbG ,

~22!

where the sa are the replicated spin variables witha
51, . . . ,ns and Qab is the ns3ns overlap matrix, withns
→0. By introducing in Eq.~21! the auxiliary spin variables
ta

m , with a51, . . . ,n and m51, . . . ,r , we can rewrite
C(b,r ) as

bC~b,r !52
b2

4
1

b2

2n F r (
a.b

n

qab
2 1

r 21

2 (
a

n

qaa
2 G

2
1

nr
ln(

[ ta
m]

expFb2

2 S (
ab

n

(
mn

r

ta
mqabtb

n

2(
a

n

(
m

r

qaaD G . ~23!

A comparison of the two trace terms in Eqs.~22! and ~23!
suggests the relationns5rn. Once this identification is done
we can connect thesa spin variables, to theta

m spin vari-
ables in the following way:

~s1 , . . . ,sns
!5~t1

1 , . . . ,t1
r , . . . . . . ,tn

1 , . . . ,tn
r !.

Let us now assume that the potentialC(b,r ) ~and thus the
TAP complexity! is calculated atk levels of RSB@18#. The
TAP overlap matrixqab is then given by

qab
(k)5q01 (

i 51

k11

~qi2qi 21!«ab
(n,yi ) , ~24!

with yk1151. The matrices« (n,yi ) are n3n ultrametric
block matrices, equal to one on the diagonal blocks of s
yi , and zero elsewhere («ab

(n,1)5dab). The variablesyi are
thus the replica symmetry breaking points. In the TAP a
proach the diagonal of the overlap matrix,qaa5qk11, con-
tains the self-overlap of the states, and for this reasonyk11
51. There arek11 values of the overlap, but onlyk non-
trivial breaking points, and thusqab is ak RSB matrix. Given
this form of qab , it is possible to prove that@22#

(
ab

n

(
mn

r

ta
mqab

(k)tb
n2(

a

n

(
m

r

qaa
(k)5 (

aÞb

rn

Qab
(k11)sasb ,

~25!
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whereQab
(k11) is a standardrn3rn RSB matrix, withk11

levels of replica symmetry breaking. More precisely,

Qab
(k11)5q01 (

i 51

k11

~qi2qi 21!«ab
(rn,ry i ) . ~26!

From this formula we see that the entries ofQab
(k11) are the

same asqab
(k) , whereas thek11 replica symmetry breaking

points xi of Qab
(k11) are rescaled by a factor ofr, that is,xi

5r y i . In particular, thelargestbreaking pointx of the static
matrix Qab

(k11) is given byx[xk115r . By inserting relation
~25! into ~23!, we finally obtain

C~b,r uqab
(k)!5F~buQab

(k11)!. ~27!

We have thus proved that the thermodynamic poten
C(b,r ) calculated at thek-RSB level is equal to static free
energyF(b) calculated at thek11 RSB level. The replica
symmetry breaking points of the static matrixQab are sim-
ply the ones of the TAP matrixqab rescaled by the paramete
r, and the extra (k11)th breaking point ofQab is equal tor.
This rescaling was first noted in Ref.@11#, and later in Ref.
@14#, although the lack of BRST symmetry of those calcu
tions prevented to prove Eq.~27!.

From Eq.~3!, and given the relation betweenC(b,r ) and
F(b), we finally have the general Legendre equation co
necting the quenched complexity of the TAP states to
standard static free energy in the SK model,

S~b, f !5bx f2bxF~b;x!, ~28!

with the largest breaking pointx fixed by the equation

f 5F~b;x!1x
]F~b;x!

]x
. ~29!

This result can be summarized as follows:the supersymmet
ric quenched complexity of the TAP states is the Legen
transform of the static free energy with respect to the larg
breaking point xof its overlap matrix.

It has been conjectured in Ref.@23# that in systems with
more than one step of replica symmetry breaking the co
plexity of clustersat level i is given by the Legendre trans
form of the free energy with respect to the breaking pointxi .
For xi5xmax clusters are just states, and our result is rec
ered. It would be interesting to study whether the conject
of Ref. @23# can be exactly proved within the supersymm
ric formalism used here.

We thank A. Crisanti, L. Leuzzi, R. Monasson, A. Mon
tanari, F. Ricci-Tersenghi, and T. Rizzo for some interest
discussions.
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